Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas
نویسندگان
چکیده
Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300 m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000 m, with the middle slope sites either grouped with those deeper than 2000 m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as "stepping stones" for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.
منابع مشابه
Cold seeps of the deep Gulf of Mexico: Community structure and biogeographic comparisons to Atlantic equatorial belt seep communities
Quantitative collections of tubewormand mussel-associated communities were obtained from 3 cold seep sites in the deep Gulf of Mexico: in Atwater Valley at 1890m depth, in Alaminos Canyon at 2200m depth, and from the Florida Escarpment at 3300m depth. A total of 50 taxa of macroand megafauna were collected including 2 species of siboglinid tubeworms and 3 species of bathymodiolin mussels. In ge...
متن کاملDeep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map
The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equa...
متن کاملCenozoic Methane-Seep Faunas of the Caribbean Region
We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and t...
متن کاملBiogeography and ecological setting of Indian Ocean hydrothermal vents.
Within the endemic invertebrate faunas of hydrothermal vents, five biogeographic provinces are recognized. Invertebrates at two Indian Ocean vent fields (Kairei and Edmond) belong to a sixth province, despite ecological settings and invertebrate-bacterial symbioses similar to those of both western Pacific and Atlantic vents. Most organisms found at these Indian Ocean vent fields have evolutiona...
متن کاملEvolution and biogeography of deep-sea vent and seep invertebrates.
Deep-sea hydrothermal vents and cold seeps are submarine springs where nutrient-rich fluids emanate from the sea floor. Vent and seep ecosystems occur in a variety of geological settings throughout the global ocean and support food webs based on chemoautotrophic primary production. Most vent and seep invertebrates arrive at suitable habitats as larvae dispersed by deep-ocean currents. The recen...
متن کامل